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Abstract. We investigate the evolutions with density of the QCD scalar susceptibility and of the sigma
mass in a chiral relativistic theory of nuclear matter, in the mean-field approximation. In order to reach
saturation we need to introduce the scalar response of the nucleons. The consequences are a quite mild
density dependence of the sigma mass and the progressive decoupling of the quark density fluctuations
from the nucleonic ones at large densities.
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1 Introduction

The order parameter associated with spontaneous break-
ing of chiral symmetry, namely the chiral quark conden-
sate, is influenced in the nuclear medium by the mean
scalar field which possesses the same quantum num-
bers [1]. Its fluctuations in the medium are intimately
related as well to the in-medium propagation of the
scalar field [2]. On the other hand, the properties of the
scalar-field influence in a crucial way the question of the
nuclear binding. It is therefore important for these prob-
lems to describe the nuclear dynamics in a way which
satisfies the chiral constraints and is able to correctly re-
produce the binding and saturation properties. The key in-
gredients can be found in the theory of quantum hadrody-
namics (QHD) [3,4], in the chiral version of ref. [1]. How-
ever, there is a well-identified problem concerning the nu-
clear saturation with usual chiral effective theories [5–7].
Independently of the particular chiral model, in the nu-
clear medium one moves away from the minimum of the
vacuum effective potential (Mexican-hat potential), i.e.,
into a region of smaller curvature. This single effect, equiv-
alent to the lowering of the sigma mass, destroys the sta-
bility, creating problems for the applicability of such ef-
fective theories in the nuclear context. One possible way
to cure this problem introduces the nucleonic response to
the scalar field, κNS , which is the central ingredient of the
quark-meson coupling model, QMC [8,9], which is quite
successful in the phenomenology of nuclear matter or fi-
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nite nuclei. Indeed, the introduction of κNS which has a
positive sign implies a density dependence of the scalar
nucleon coupling constant, which actually decreases with
increasing density. This effect can counterbalance the de-
crease of the sigma mass and restore saturation. It is the
aim of this work to explore the density evolution of the
scalar meson mass and of the QCD scalar susceptibility
in a realistic chiral effective theory which incorporates the
concept of a nucleonic scalar response to a scalar field.
Inside our framework, i.e., the sigma model formulated
in a non-linear version but with the presence of a chiral
singlet scalar field, we will choose the parameters so as
to be compatible with the known saturation properties
of nuclear matter: saturation density, binding energy and
compression modulus. In our fit of the nuclear-matter data
κNS is a parameter that we can adjust. But the sign found
in QMC is crucial. It originates from relativistic effects of
quarks confined in a bag (Z-graphs) and it is positive. It
screens the scalar field (diamagnetic effect). The fact that
the nucleonic scalar response manifests itself at the nuclear
level is plausible and familiar in other situations. For in-
stance, under the influence of an isovector axial field, the
nucleon converts into a ∆. This axial polarizability of the
nucleon has several physical implications (such as the in-
medium renormalization of the axial coupling constant).

The problem of the in-medium sigma mass is interest-
ing in connection with two-pion production experiments.
A lowering of this mass due to the partial restoration
of chiral symmetry, as we have previously discussed, has
been proposed in [10] as the origin of the accumulation of
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strength near the two-pion threshold in these experiments
on nuclei [11–13]. Since the pure chiral effective theories
with the full dropping of the sigma mass are incompatible
with saturation, it is interesting to explore what mod-
ification is allowed in order to be compatible with the
nuclear-matter data. The result of our investigation is
that the density dependence of the sigma mass has to be
quite mild.

Section 2 is devoted to the formal derivation from
the equation of state of various quantities: sigma mass,
QCD susceptibility, nuclear response. In sect. 3 we per-
form the numerical evaluations of these quantities, ensur-
ing the compatibility with the nuclear phenomenology and
we discuss the consequences.

2 Equation of state and scalar fluctuations

We start with the Lagrangian introduced in our previous
work [1], dropping its pionic part which does not con-
tribute at the mean-field level:

L =
1

2
∂µs∂µs − V (s) + iN̄γµ∂µN −MN

(

1 +
s

fπ

)

N̄N ,

(1)
where s is the chiral invariant field associated with the
radius S = s + fπ of the chiral circle. V (s) = V0(s) − cS
is the vacuum potential which can be split into V0(s) =

(λ/4)
(

(fπ + s)2− v2
)2

responsible for spontaneous chiral-
symmetry breaking and the explicit symmetry breaking
piece, −cS, where c = fπm

2
π. As usual, in QHD we add a

coupling to an omega field:

LV =
1

2
∂µω∂µω +

1

2
m2
ω ω

2 − gω ωN
†N. (2)

As for the nucleonic response, κNS , to the scalar field s,
we incorporate it in the following extra term in the La-
grangian:

Lχ = −
1

2
κNS s

2 N̄N. (3)

The susceptibility κNS embeds the influence of the inter-
nal nucleon structure. We will discuss later its possible
s-dependence. At the mean-field level the energy density
is given by

ε =

∫

4 d3p

(2π)3
Θ(pF − p)E∗

p(s̄) + V (s̄) +
g2
ω

2m2
ω

ρ2 , (4)

where the baryonic density is related to the Fermi momen-
tum through

ρ =

∫

4 d3p

(2π)3
Θ(pF − p) (5)

and E∗
p(s̄) =

√

p2 + M∗2
N (s̄) is the energy of an effective

nucleon with the effective mass

M∗
N =MN

(

1 +
s̄

fπ

)

+
1

2
κNS s̄

2. (6)

The expectation value, S̄ = fπ + s̄, of the S-field, plays
the role of the chiral order parameter. It is obtained by
minimizing the energy density,

∂ε

∂s̄
= g∗S ρS + V ′(s̄) = 0 , (7)

with the following expressions for the scalar density, ρS ,
and the scalar coupling constant g∗S :

ρS =

∫

4 d3p

(2π)3
Θ(pF − p)

M∗
N

E∗
p

and

g∗S(s̄) =
∂M∗

N

∂s̄
=
MN

fπ
+ κNS s̄.

Notice that the density dependence of g∗S entirely arises
from the susceptibility term. Since the mean scalar field is
negative and the sign of κNS positive, g∗S is a decreasing
function of the density. In the vacuum, the scalar coupling
constant of the model is gS = MN/fπ. The in-medium
sigma mass is obtained as the second derivative of the
energy density with respect to the order parameter:

m∗2
σ =

∂2ε

∂s̄2
= V ′′(s̄) +

∂ (g∗S ρS)

∂s̄
=

m2
σ

(

1 +
3s̄

fπ
+

3

2

(

s̄

fπ

)2
)

+ κNS ρS + g∗S
∂ρ∗S
∂s̄

,

(8)

where in the second line we have taken V ′′(s̄) in the chiral
limit. The mean scalar field s̄ being negative, the term lin-
ear in s̄ (which appears from the curvature of the effective
potential) in itself lowers the sigma mass by an appreciable
amount (' 30% at ρ0). This is the chiral dropping asso-
ciated with chiral restoration emphasized by Hatsuda et

al. [10], which they suggested to be the origin of the strong
medium effects found in 2π production experiments [11–
13]. However, the scalar-susceptibility term (second term
in κNS on the r.h.s of eq. (8)) counterbalances this in-
medium mass dropping. Numerically, in order to reach sat-
uration, its effect has to be important and the cancellation
has to be nearly complete, as we will show later. Hence,
the sigma mass evolution has to be discussed in connection
with saturation properties. In pure quantum hadrody-
namics instead, the chiral softening of the sigma mass is
ignored and saturation is obtained entirely through the
density evolution of the scalar density of nucleons. As for
the last term (g∗S ∂ρ

∗
S/∂s̄) of eq. (8), it also writes

g∗S
∂ρ∗S
∂s̄

= g∗2S

∫

4 d3p

(2π)3
Θ(pF − p)

p2

E∗3
p

. (9)

We have shown in a previous work [14] that it actually
corresponds to the nuclear response associated with NN̄
excitation. In practice it is small and it can be omitted.

We will now derive the in-medium chiral condensate
and the QCD scalar susceptibility. They are related to the
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first and second derivatives of the grand potential with re-
spect to the quark mass m at constant chemical potential
µ. The baryonic chemical potential is obtained as

µ =
∂ε

∂ρ
= E∗

F +
g2
ω

m2
ω

ρ with E∗
F =

√

p2
F +M∗2

N (s̄) ,

(10)
from which one deduces that the baryonic density is con-
troled by the chemical potential according to

ρ =

∫

4 d3p

(2π)3
Θ

(

µ − E∗
p −

g2
ω

m2
ω

ρ

)

, (11)

while the scalar density writes

ρS =

∫

4 d3p

(2π)3
M∗
N

E∗
p

Θ

(

µ − E∗
p −

g2
ω

m2
ω

ρ

)

. (12)

The grand potential, which is obtained through a Legen-
dre transform, can be written in the following form:

ω(µ) = ε − µρ =
∫

4 d3p

(2π)3

(

E∗
p +

g2
ω

m2
ω

ρ − µ

)

×Θ

(

µ− E∗
p −

g2
ω

m2
ω

ρ

)

+ V (s)−
g2
ω

2m2
ω

ρ2. (13)

Notice that the minimization (eq. (7)) can be equivalently
obtained from the condition (∂ω/∂s̄)µ = 0. In order to
derive the condensate and susceptibility we point out that,
in the context of this model, what plays the role of the
chiral-symmetry breaking parameter is the quantity c =
fπm

2
π which enters the symmetry breaking piece of the

potential. Hence,

〈q̄q〉 =
1

2

(

∂ω

∂m

)

µ

=
1

2

∂c

∂m

(

∂ω

∂c

)

µ

=

−
1

2

∂c

∂m
S̄ '

〈q̄q〉vac
fπ

S̄ , (14)

where we have used the Feynman-Hellman theorem and
the explicit expression of ∂c/∂m given by the model to
leading order in the quark mass m. Accordingly, the in-
medium scalar susceptibility is given by

χS =

(

∂〈q̄q〉

∂m

)

µ

= −
1

2

(

∂c

∂m

)2 (

∂S̄

∂c

)

µ

'

−2
〈q̄q〉2vac
f2
π

(

∂S̄

∂c

)

µ

. (15)

The derivative (∂S̄/∂c)µ is obtained by taking the deriva-
tive of the minimization equation (7) with respect to the
parameter c. This gives

m∗2
σ

(

∂S̄

∂c

)

µ

= 1 − g∗S Π0(0)

×

[

g∗S
M∗
N

E∗
F

(

∂S̄

∂c

)

µ

+
g2
ω

m2
ω

(

∂ρ

∂c

)

µ

]

, (16)

with Π0(0) = −2M
∗
N pF /π

2. Notice that Π0(0) is nothing
but the non-relativistic free Fermi-gas particle-hole polar-
ization propagator in the Hartree scheme, at zero energy
in the limit of the vanishing momentum. The derivative of
the baryonic density is obtained by taking the derivative
with respect to c of eq. (11), with the result

(

∂ρ

∂c

)

µ

= g∗S

(

∂S̄

∂c

)

µ

Π0(0)

(

1 −
g2
ω

m2
ω

E∗
F

M∗
N

Π0(0)

)−1

.

(17)
It follows that

(

∂S̄

∂c

)

µ

=
1

m∗2
σ

−
1

m∗2
σ

ΠSS(0)
1

m∗2
σ

, (18)

where ΠSS(0) is the full scalar polarization propagator (in
which we include the coupling constant):

ΠSS(0) = g∗2S
M∗
N

E∗
F

Π0(0)

×

[

1−

(

g2
ω

m2
ω

E∗
F

M∗
N

−
g∗2S
m∗2
σ

M∗
N

E∗
F

)

Π0(0)

]−1

. (19)

We now comment these results. Firstly, notice that the
quantity (∂S̄/∂c)µ, as written in eq. (18), is the in-medium
scalar meson propagator (up to a minus sign) dressed by
NN−1 excitations. Moreover, it is satisfactory to realize
that the expression of ΠSS (eq. (19)) coincides with the
one derived from the RPA equations in the ring approxi-
mation. In RPA the residual interaction can be due either
to the scalar meson exchange or to the vector one [15].
In the latter case the mixed propagator ΠSV enters. The
RPA equations read

ΠSS = Π0
SS + Π0

SS D
0
S ΠSS − Π0

SV D
0
V ΠV S ,

ΠV S = Π0
V S + Π0

V S D
0
S ΠSS − Π0

V V D
0
V ΠV S (20)

with D0
S = −1/m∗2

σ and D0
V = −1/m2

ω. The solution for
ΠSS is

ΠSS =

Π0
SS −D0

V

(

Π0
SVΠ

0
V S −Π0

SSΠ
0
V V

)

1−Π0
SSD

0
S +Π0

V VD
0
V +D0

SD
0
V (Π0

SVΠ
0
V S−Π

0
SSΠ

0
V V )

.

(21)

One recovers our result of eq. (19) since, as shown in the
appendix,

Π0
SS(0) = g∗2S

M∗
N

E∗
F

Π0(0), Π0
V V (0) = g2

ω

E∗
F

M∗
N

Π0(0),

Π0
SV (0) = Π0

V S(0) = g∗S gωΠ0(0). (22)

In our approach the Landau-Migdal parameter F0 en-
ters the RPA denominator of eq. (19) which, at ρ0,
writes 1 + F0. This equation also shows that our residual
particle-hole interaction is density dependent, in partic-
ular through the density dependence of g∗S and m∗

σ. Our
approach provides a consistent relativistic frame in a chi-
ral theory to derive this density dependence. A similar
expression has been given in ref. [6].
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As for the full vector polarization propagator ΠV V ,
solution of the RPA equations, it is given by

ΠV V (0) = g2
ω

E∗
F

M∗
N

Π0(0)

×

[

1−

(

g2
ω

m2
ω

E∗
F

M∗
N

−
g∗2S
m∗2
σ

M∗
N

E∗
F

)

Π0(0)

]−1

. (23)

The fact that the same RPA denominator enters both
expressions of ΠSS and ΠV V , allows to infer the collective
nature of ΠSS from that of ΠV V . The quantity ΠV V , i.e.,
the response to a probe which couples to the nucleon den-
sity fluctuations, is related to the nuclear compressibility.
We introduce the incompressibility factorK of the nuclear
medium, defined as

K = 9 ρ
∂2ε

∂ρ2
= 9 ρ

∂µ

∂ρ
= 9 ρ

∂

∂ρ

(

E∗
F +

g2
ω

m2
ω

ρ

)

=

pF
E∗
F

∂pF
∂ρ

+
M∗
N

E∗
F

g∗S
∂s̄

∂ρ
+

g2
ω

m2
ω

. (24)

The minimization (eq. (7)) establishes the dependence of
s̄ with respect to ρ. By taking its derivative, one gets

∂s̄

∂ρ
= −

g∗2S
m∗2
σ

M∗
N

E∗
F

. (25)

It follows that
ΠV V (0)

g2
ω

= −
9ρ

K
. (26)

This relation is well known in the non-relativistic situa-
tion. We have shown that it also applies in the relativistic
case with ΠV V given above (eq. (23)). At low densities
where relativistic effects are small, there is no distinction
between the scalar and vector propagators and we have
ΠSS(0)/g

∗2
S ' ΠV V (0)/g

2
ω. More generally the relation is

ΠSS(0)

g∗2S
=

(

M∗
N

E∗
F

)2
ΠV V (0)

g2
ω

. (27)

With our values of parameters the parenthesis represents
a reduction of about 10% at ρ0. The nuclear-physics in-
formation on the nuclear-matter compressibility leads to a
value of K in the range 200–300 MeV. This is close to the
free Fermi-gas value, which is 230 MeV for M ∗

N = MN .
Thus, the nuclear phenomenology which constraints the
residual interaction at saturation density, also constraints
scalar quantities, such as the scalar nuclear response and
the QCD scalar susceptibility.

3 Numerical results and discussion

3.1 Sigma mass

The first consequence we wish to discuss is the problem
of the density dependence of the scalar meson mass. Its
explicit form (in the chiral limit) is given by eq. (8) and

0                           1 2                           3

ρ/ρ0

−20

−15

−10

−5

0

5

10

E
/A

 (
M

e
V

)
Fig. 1. Binding energy of nuclear matter. The dashed line
corresponds to the set of parameters gω = 7, mσ = 750 MeV
and C = 0.85 in the absence of the density dependence of
the nucleon susceptibility. The full line corresponds to a set
of parameters gω = 6.8, mσ = 750 MeV and C = 1 with an
explicit field (density) dependence of the nucleon susceptibility
as explained in the text.

we now come to the quantitative estimate. It is possible to
get a first evaluation of the nucleon response, κNS , from
the parameters of the QMC model, as given in [9]. It gives
for the dimensionless parameter C = (f 2

π/2MN )κNS the
value C = 0.45. Two independent parameters remain to
be fixed: gS/mσ and gω/mω. Since gS = MN/fπ is given
by our model and since we take for the omega mass the
vacuum value mω = 783 MeV, the parameters to be fixed
are in fact mσ and gω. In a first step we keep for the scalar
potential, V0(s), only the quadratic part, namely, V0(s) =
m2
σs

2/2, as in the original Walecka or QMC model which
both ignore the chiral softening of the sigma mass. In such
a case the saturation properties (ρ0 = 0.17 fm−3, E/A =
−15.3 MeV) are obtained by taking mσ = 715 MeV and
gω = 7.47. The corresponding incompressibility is K =
260 MeV and the effective nucleon mass at ρ0 is M∗

N =
760 MeV.

If instead we introduce the full chiral V0(s), the effect
of chiral restoration associated with the dropping of the
sigma mass (see eq. (8)) and the accompanying discus-
sion) destroys the saturation. In order to recover it, one
has to increase the nucleonic susceptibility κNS (or equiv-
alently C). Indeed with value C = 0.8, and keeping the
other parameters to the same values we find saturation at
ρ0. However, the binding energy E/A = −17.8 MeV and
the incompressibility K = 360 MeV are too large. A slight
readjustment of the parameters C = 0.85, mσ = 750 MeV
and gω = 7 can solve the problem for the binding energy
(see dashed curve of fig. 1) but the incompressibility re-
mains too large (above 300 MeV). It can be brought to a
more realistic value with a field dependence of the suscep-
tibility. We take a simple linear one with a vanishing of
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Fig. 2. Density evolution of the sigma mass. Dashed line: in
the absence of the field (density) dependence of the nucleon
susceptibility with values of the parameters gω = 7, mσ =
750 MeV and C = 0.85. Full line: with density dependence
of the nucleon susceptibility with gω = 6.8, mσ = 750 MeV
and C = 1. Dot-dashed line: it corresponds to the case where
only the chiral softening is included, without the effect of the
nucleon susceptibility.

κNS at restoration (s̄ = −fπ). Hence in expression (6) of
the mass we make the following replacement:

κNS → κNS(s̄) =
∂2MN

∂s̄2
= κNS

(

1 +
s̄

fπ

)

. (28)

In this case the set of parameters gω = 6.8, mσ =
750 MeV and C = 1, leads to correct saturation proper-
ties, with an incompressibility value K = 270 MeV (full
curve of fig. 1) andM∗

N (ρ0) = 760 MeV. Notice that in this
case the corresponding value of the residual interaction F0

at ρ0 is practically zero (F0 ' 0.03). This is due to a deli-
cate cancellation between two large terms: the omega ex-
change and the in-medium modified scalar exchange, the
magnitude of each term being of the order of 3.

For our main point which is the sigma-mass evolution,
its general behaviour is, to a large extent, independent
of the exact field dependence of the susceptibility. Fig-
ure 2 represents this evolution without (dot-dashed curve)
and with the effect of the nucleonic scalar response, in-
troducing or not its field dependence. The two curves
with this nucleonic scalar response are rather flat. The
nucleon reaction largely suppresses the strong softening
due to chiral restoration which, if taken alone, would not
be compatible with saturation properties. A similar con-
clusion was reached in ref. [6]. The stability of the sigma
mass practically rules out the interpretation of the 2π pro-
duction experiments in terms of the chiral dropping of
the sigma mass. However, the more traditional interpre-
tation of these data in terms of the modification of the
ππT -matrix by the dressing of the pion lines by p-h bub-
bles [16] holds, at least for the photoproduction experi-

ment [17]. In a forthcoming work we show that this effect
also has a connection to chiral-symmetry restoration. We
also demonstrate that this strong reshaping of the scalar
strength in the nuclear medium does not affect the scalar
NN interaction.

3.2 Nuclear responses

Our second point concerns the nuclear response to a
probe which couples to the nucleon density, scalar or vec-
tor, for which we have given the relativistic expressions
(eqs. (19), (23)). At ρ0 we have seen that the value of the
incompressibility K of nuclear matter lies in the range
200–300 MeV. This is close to the free Fermi-gas value,
which is K = 230 MeV forM∗

N =MN . In QMC where the
effective mass does not differ so much from the free one,
the experimental value of K implies a small residual force
at ρ0. Our choice of parameters takes this constraint into
account. This smallness of F0 results from the accidental
cancellation between omega and sigma exchanges. This
delicate balance is upset with a change of the density. Sev-
eral factors are responsible for this phenomenon. Firstly
the relativistic factor (M∗

N/E
∗
F ) lowers the sigma exchange

while it enhances the omega one, by a density-dependent
amount. However, this is not the main effect. The main
one is due to the action of the nucleonic reaction κNS
which is responsible for the decrease of the scalar coupling
constant with increasing density. The sigma effectively de-
couples from the nucleon at large density, leaving the re-
pulsive omega interaction to dominate. The reverse oc-
curs at smaller density with the increase of gS . The sigma
attraction then fully develops and dominates the repul-
sive omega exchange. Thus, with increasing density, the
residual interaction turns from attraction into repulsion.
Each component being large, the evolution is fast. For
instance, with our parameters the resulting attraction is
strong enough to produce a singularity of the polarization
propagator at a density ρ ' 0.6ρ0. We identify it with the
spinodal instability. In the density region below the sat-
uration one, the responses are collective with a resulting
softening of the response. It is reflected as an enhancement
in magnitude of the corresponding nuclear susceptibility,
proportional to ΠSS(0)) or ΠV V . Above ρ0, instead, col-
lectivity hardens the response and decreases the suscep-
tibility. Notice that the quantity ΠSS(0)) which incorpo-
rates the effective coupling constant g∗2S is suppressed at
large densities not only by the collective RPA denomina-
tor but also by the dropping in the medium of g∗S .

The density dependence of the residual interaction is
well established [18,19]. It is small in the nuclear inte-
rior and strongly attractive at the nuclear periphery. On
the other hand, the collective nature of the vector re-
sponse is confirmed by data, from (e, e′) scattering, on
the longitudinal response of various nuclei at small mo-
menta. The charge response is a sum of a vector-isoscalar
response and a vector-isovector one. Only the first part is
relevant for our discussion. The data at small momenta
(200–300 MeV/c) display a strong softening effect with
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respect to the free response. Alberico et al. [20] have at-
tributed this feature to the collective attractive charac-
ter, at the nuclear periphery hence at low density, of the
isoscalar part of the charge response. The density depen-
dence of the residual force with the evolution from at-
traction into repulsion with increasing density naturally
follows in our description with sigma and omega exchange
and with the incorporation of the nucleonic scalar re-
sponse, necessary to favor the omega contribution relative
to the sigma one with increasing density.

3.3 QCD susceptibilities

It is normal that the collective character of the nuclear re-
sponse shows up in the QCD susceptibility, as the quark
density fluctuations are coupled to the nucleonic ones. In
ref. [2] we have derived, in the linear sigma model, the fol-
lowing relation between the in-medium QCD scalar sus-
ceptibility and the vacuum one:

χS
χS,vac

=
m2
σ

m∗2
σ

(

1 −
ΠSS(0)

m∗2
σ

)

. (29)

For a quantitative evaluation we calculate the r.h.s. in
our model with values of the parameters which are those
given previously. The resulting density evolution is shown
in fig. 3 in the case of a constant κNS . At ρ0 the enhance-
ment over the vacuum value is a factor of about 5. At lower
density it becomes even larger due to the collectivity of the
polarization propagatorΠSS , with the repulsive attractive
p-h force which enhances its magnitude. At larger densi-
ties instead the p-h force suppresses ΠSS , which shows
up in the gradual disappearance of the medium effects,
as depicted in fig. 3. As ΠSS approaches zero, only the
effective-mass influence survives. It is somewhat model
dependent through the density behaviour of κNS . With
the introduction of a density dependence of κNS , a mod-
erate enhancement (a factor of about 2) of the scalar sus-
ceptibility survives at density of the order of twice the
nuclear-matter density.

It is interesting to contrast the evolution of the scalar
susceptibility with that of the other QCD susceptibil-
ity, the pseudoscalar one. This last quantity is linked
to the fluctuations of the quark pseudoscalar-isovector
density. The question is wether the increase in magni-
tude of the scalar susceptibility due to the coupling to
the nucleon-hole states leads to a convergence effect be-
tween the two susceptibilities, which would be a signal for
chiral-symmetry restoration since the two susceptibilities
become equal in the restored phase. In ref. [2] we have
demonstrated that the evolution of the pseudoscalar sus-
ceptibility follows that of the quark condensate, with

χPS =
〈q̄q(ρ)〉

m
(30)

which diverges in the chiral limit, as it should. The con-
densate on the r.h.s. is a function of the density and also
of the quark mass. We calculate its value from eq. (14),
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Fig. 3. Density evolution of the QCD susceptibilities normal-
ized to the vacuum value of the scalar one calculated with the
field dependence of the nucleon susceptibility. Full curve: scalar
susceptibility. Dashed curve: pseudoscalar susceptibility.

at the physical value of the pion mass (quark mass). It is
a smooth function of the density, as shown in fig. 3. Its
nearly linear behaviour indicates the validity of the inde-
pendent nucleon approximation. The spinodal instability
which affects the scalar susceptibility does not influence
the pseudoscalar one. At ρ0 the two suceptibilities show an
appreciable convergence effect. It is even larger at smaller
density due to the spinodal unstability.

Our mean-field description ignores the role of the pion
in the nuclear binding. Hence, the condensate evolution
only incorporates the sigma influence as is clear from
eq. (14). The role of the pion cloud is omitted, while it
is known to be large. At ρ0 the convergence effect will be
more pronounced in the more complete approach which in-
corporates the pion. However, our conclusions about the
stability of the sigma mass and the progressive decoupling
of the quark density fluctuations from the nucleonic ones
as the density increases will survive in the more complete
approach.

4 Conclusion

In summary, our aim has been to evaluate the evolution
with density of quantities linked to QCD or chiral symme-
try: the quark condensate, the QCD scalar susceptibility
and the sigma mass. For this we have worked in a rela-
tivistic chiral effective theory which describes reasonably
well the saturation properties of nuclear matter. We have
chosen a non-linear sigma model, implemented with the
presence of a chiral invariant scalar field of massmσ which
provides the nuclear attraction. Adding the vector meson
repulsion, we have the ingredients of quantum hadrody-
namics and we have worked in the mean-field approxima-
tion. In order to counterbalance the chiral softening of
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the sigma mass in the medium, which prevents satura-
tion from occurring, we have to incorporate in the theory
the concept of the scalar response of the nucleon, as in-
troduced in QMC. In order to reproduce the saturation
properties, the cancellation effect has to be nearly com-
plete and the evolution with density of the sigma mass
becomes quite mild, which makes the interpretation of the
2π production experiments by the chiral dropping of the
sigma mass problematic. However, introducing the quasi-
particle character of the pion in the nuclear medium, one
is able to reproduce the data, at least for the photopro-
duction experiment [17].

For the QCD scalar susceptibility, its magnitude is ap-
preciably enhanced at normal saturation density due to
the coupling of the quark scalar density fluctuations to
the low-lying nuclear states. However, we have found that
this effect does not develop further with increasing den-
sity and fades away as one gets closer to full restoration of
chiral symmetry. The main reason is that the progressive
decoupling of the sigma field from the nucleon induced
by the nucleonic scalar response suppresses the effect of
the nuclear excitations on the scalar susceptibility, which
tends to become closer to its vacuum value.

We thank P. Guichon and D. Davesne for fruitful discussions.

Appendix A. Relativistic bare polarization

propagators

First consider the bare first-order polarization propagator
in the vector channel:

Π0
V V (0)

g2
ω

= − lim
~q→0

∫

8 d3p

(2π)3
Θ(pF − p)Θ(|~p+ ~q| − pF )

E∗
~p+~q − E∗

p

.

(A.1)

We multiply the denominator and the numerator by
E∗
~p+~q + E∗

p which leads to

Π0
V V (0)

g2
ω

= − lim
~q→0

∫

8 d3p

(2π)3
(E∗

~p+~q + E∗
p)

×
Θ(pF − p)Θ(|~p+ ~q| − pF )

(~p+ ~q)2 − p2
. (A.2)

Obviously, the factor (E∗
~p+~q + E∗

p) in the integrand can

be replaced by 2E∗
F since in the limit ~q → 0, ~p has to lie

on the Fermi surface. It follows that

Π0
V V (0)

g2
ω

= −
E∗
F

M∗
N

lim
~q→0

∫

8 d3p

(2π)3
Θ(pF−p)Θ(|~p+ ~q | − pF )

(~p+ ~q)2/2M∗
N − p2/2M∗

N

(A.3)
and the remaining integral is manifestly the non-
relativistic Π0(0). This establishes the second relation
given in eq. (22). For each scalar vertex one gets an ad-
ditional multiplying factor M∗

N/E
∗
F . Thus, for one scalar

vertex as is the case in the mixed term Π0
SV (0), the rela-

tivistic correction factor altogether disappears, hence the
relation in eq. (22). The presence of two scalar vertices
leads to the first relation for the pure scalar polarization
propagator Π0

SS(0).
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